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INVESTIGATION OF AIR DAMPING 

OF CIRCULAR AND RECTANGULAR PLATES, 

A CYLINDER, AND A SPHERE 

By David G. Stephens and Maurice A. Scavullo 
Langley Research Center 

SUMMARY 

fka  investigation was conducted to determine the mechanism of air damping 
exhibited by rigid bodies of different shapes oscillating in a pressure environ- 
ment. Circular and rectangular plates, as well as a sphere and cylinder, were 
attached to cantilever springs and the free decay of an induced oscillation was 
measured at pressure levels from atmospheric to k  X 10-2 torr.  Data are pre- 
sented to show the effect of pressure, vibratory amplitude, frequency, shape, 
and surface area on the air damping of the models. Results indicate that the 
magnitude of the air damping may greatly exceed the structural damping of the 
system. The air damping associated with the plates is directly proportional to 
the pressure and amplitude and is indicative of dissipative loads proportional 
to the dynamic pressure. Furthermore, the plate damping was found to be inde- 
pendent of shape and is a nonlinear function of the surface area. The sphere 
and cylinder exhibit viscous damping characteristics which are in good agree- 
ment with available theoryJ  . 

INTRODUCTION 

The vibratory response of a mechanical system is highly dependent upon the 
total damping. In most situations this damping results from the action of 
several dissimilar dissipative mechanisms, one or more of which may be a func- 
tion of the operating environment. Some of the more common sources of energy 
dissipation Include internal hysteresis (ref. 1), interface or joint friction 
(ref. 2), and external or air damping. The air damping is dependent upon the 
magnitude of the pressure environment and, therefore, deserves particular atten- 
tion in studying the response of systems designed to operate throughout a wide 
range of pressure or density. If, for example, the vibration tests of a space 
vehicle are conducted under atmospheric pressure conditions, the damping level 
and consequently the response will be somewhat different than in the actual 
operating environment which involves reduced pressures. Thus the interpreta- 
tion and extrapolation of the results of such tests must include the effects of 
the pressure environment. 



An object moving in a fluid such as air may lose energy to the surrounding 
medium as a result of one or more resistive effects. The dissipation may result 
from viscous laminar boundary-layer friction, sound radiation, and vortex for- 
mation and shedding. However, the relative importance of each of these phenom- 
ena on the damping of a vibrating body is not known. Results of previous inves- 
tigations are limited to the effects of a single loss phenomenon on the damping 
of specific objects. For example, theoretical studies of the viscous damping 
forces experienced by a sphere and cylinder oscillating in a fluid are discussed 
by Lamb (ref. 3) and by Stokes (ref. It-), respectively. When these objects are 
undergoing relatively low frequency oscillations, theory predicts that they will 
experience forces proportional to the velocity and the square root of the fluid 
density. These predictions were examined experimentally in reference 5 in which 
a cylinder was swung as a pendulum about one end and limited damping measure- 
ments taken at several pressure levels. For the frequency examined (0-7 cps), 
good agreement was found with the theory. The damping of a "two-dimensional" 
plate resulting from sound radiation is discussed in references 6 and 7- A 
rigid plate oscillating such that the fluid cannot pass over the edges is 
theoretically shown to experience damping forces directly proportional to the 
density, velocity, and the square of the area although no experimental verifi- 
cation is indicated. A case in which vortex effects may have been predominant 
is discussed in reference 8. The air damping force experienced by a small 
cantilever beam is shown to be proportional to the square of the vibratory 
velocity. 

The purpose of this paper is to present the results of an investigation of 
the characteristics of the air damping exhibited by rigid circular and rectan- 
gular plates, a sphere, and a cylinder oscillating in a pressure environment 
varying from atmospheric to k  X 10-2 torr. The effects of area, shape, vibra- 
tory amplitude, excitation frequency, and pressure are examined. 

SYMBOLS 

A       area of a panel, sq ft 

a       radius of sphere, cylinder, or disk, ft 

"Lb — *^ £-* c 
b       velocity squared damping coefficient,    ^ 

X"K ^ 3 g c 
c       viscous damping coefficient, — 

it 

E       energy of oscillating system, lb-ft 

AE       energy dissipated per cycle, lb-ft 

cycles 
f       frequency of oscillation, —  



k       slope, ft (see fig. 8) 

I length of plate or cylinder, ft 

m       vibratory mass, lb-sec
2 

ft 

p pressure of chamber, torr 

t thickness of material, ft 

u vibratory velocity, ft/sec 

w width of plate, ft 

X damping force, lb 

y vibratory amplitude, ft 

- '^ ä 
logarithmic decrement,  — log -°- 

fluid density, 

ß " \toj      >  ft 

yn 

lb-sec^ 

ft£ 
sec 

ft1* 

v       kinematic viscosity, 

CD       circular frequency of oscillations,   
'  sec 

Subscripts: 

a air 

e external 

i internal 

j joint 

n nth cycle of vibration 

o initial cycle of vibration 

t beam tip 



x       extraneous damping 

1,2     designates cycle 

max     maximum 

Dots over symbols denote derivatives with respect to time. 

APPARATUS AND TEST PROCEDURE 

Vacuum Equipment 

The vacuum system used in this investigation is shown schematically in 
figure 1. The chamber consisted of a glass bell jar 18 inches in diameter and 
30 inches high which was sealed to a 6-inch steel spacer. The steel spacer 
provided access ports (for electronic leads and vacuum lines) from the side 
rather than from the bottom of the chamber as in a conventional bell jar system. 
The spacer was in turn mounted on a steel base plate; and the system was 
anchored to a massive steel and concrete block to eliminate the transmission 
of vibratory energy from the apparatus to the adjoining structure. A 5-cubic- 
foot-per-minute mechanical pump was used to obtain the desired pressure levels 
between the limits of 1 atmosphere and k  X 10~2 torr. A flexible coupling 
between the pump and the chamber reduced the transmission of pump vibrations to 
the system. 

Vibration Equipment 

The equipment used to study the damping of the various models within the 
vacuum chamber is shown schematically in figure 2. Depending upon the desired 
frequency, one of two cantilever beams was employed to support the models and 

provide the oscillation. The beams, 15j- inches long and l/2 inch wide, had 

thicknesses of l/8 and 3/8 inch and were tuned to frequencies of 3.8 and 

Bell jar 

Steel spacer 

Flex coupling- 

Figure 1.- Schematic of vacuum system. 
Figure 2.- Test apparatus and 

instrumentation. 



21.2 cps, respectively, by attaching a small mass to the beam tip. Each beam, 
machined from a single piece of stainless steel, had a relatively large foot 
for mounting the assembly to the base plate and a T-section at the tip for 
attaching the models. A spring-loaded solenoid was used to excite the funda- 
mental vibratory mode of the cantilever beam. When energized the solenoid slug 
moved forward and imparted a static deflection to the beam. Upon de-energizing, 
the slug was quickly retracted by the spring and the free decay of the model- 
beam system was studied. 

3 1 
In addition to these beams, an aluminum beam 25r- inches x 2 inches X - inch 

was used to study the damping characteristics of three large plates at a fre- 
quency of 3.8 cps. Since this study was conducted under atmospheric pressure 
conditions, the beam was deflected and released manually. 

Instrumentation 

The damped oscillations of the model-beam system were monitored by means 
of a strain gage attached near the root of the beam. The output of this gage 
was amplified and fed into an electronic dampometer which measured the fre- 
quency and logarithmic decrement of the oscillation. 

A Bourdon gage and an ion gage were used to measure the pressure in the 
bell jar. The Bourdon gage was used from a pressure of 1 atmosphere to 1 torr 
and the ion gage was used from 1 torr to the lowest attainable pressure in the 

system (k  X 10"2 torr). 

Models 

The damping was studied for the models shown and described in table I. 
The plates with surface areas of 15, 30, and *t-5 square inches and the sphere 
and cylinder, each having a projected surface area of 30 square inches, were 
used for most of the tests. These models were selected to examine the effects 
of shape and area on the air damping within the vacuum system. The rectangular 
plates having surface areas between 12 and 39 square inches were used in lim- 
ited tests to better define the damping-area relationship. The remaining rec- 
tangular plates, having surface areas of 93-8, I52, and 2^0 square inches, were 
studied at atmospheric conditions to investigate the possibility of applying 
the results obtained for the small models to larger systems. The materials, 
from which the models were constructed, are given in table I and were chosen to 
maintain approximately the same weight for all models used in a particular test. 
All panels were machined with square edges. 

Test Procedure 

The damping characteristics of the beams alone, tuned to 3.8 or 21.2 cps 
by the addition of concentrated masses to the tip, were studied initially. The 
selected model was then securely attached to the tip of the beam and damping of 



the assembled system, tuned in a similar manner to a frequency of either 3.8 or 
21.2 cps, was measured. The basic procedure for measuring this damping within 
the vacuum chamber was essentially the same for each case. The chamber was 
pumped down to the desired pressure level and for all but the lowest pressure 
level (k-  x 10-2 torr) the pump was stopped while the test points were taken. 
The beam was deflected by means of the solenoid and released. When the ampli- 
tude of the ensuing oscillation reached a pre-selected value, the output of the 
strain gage triggered the dampometer which measured the decay of the oscilla- 
tion until the amplitude reached 7/10 of the value for the initial reading. 
The damping in terms of the log decrement was then calculated from 

where n was the number of cycles recorded between these amplitude limits. In 
all cases the initial deflection was of sufficient amplitude to allow any 
undesirable transients to decay before a test point was taken. 

The decrement was measured at various positions along the envelope to 
determine the dependency, if any, of the damping on the amplitude. The ampli- 
tude associated with a test point was determined in a separate test in which 
the dynamic deflection of the system was measured at the selected output levels. 
The deflection, at various positions along the beam and model, was determined 
by placing a stylus at the desired position and measuring the resulting trace. 
For the amplitude range considered, the normalized mode shape of the tuned beam 
was found to be independent of amplitude and the same for each assembly at a 
given frequency. 

In limited tests conducted to examine extrapolation techniques, panels of 
considerably larger area were examined for several amplitudes at atmospheric 
pressure only, as size precluded installation in the vacuum system. The pro- 
cedure was essentially the same. The damping of the beam, tuned to the fre- 
quency of the beam panel assembly (3.8 cps), was studied and then the total 
damping of the beam-panel system was examined. 

ANALYSIS 

The test program and subsequent data reduction were directed toward the 
examination of the effects of pressure or density, amplitude, frequency, shape, 
and area on the air damping of the models. An investigation of the free decay 
of the system was found to be most expedient for measuring the damping and 
isolating the effects of the variables. The decay of the oscillation was ana- 
lyzed over selected portions of the envelope and specified in terms of logarith- 
mic decrement 5. For purposes of this investigation, the decrement is physi- 
cally interpreted as the ratio of the energy lost per cycle to twice the total 
energy and is given by the equation 

5=M (1) 
2E 



as is discussed in reference 9. Two characteristics of equation (l) should be 
noted. First, the relationship is applicable for analyzing or interpreting any- 
damped oscillation regardless of the type of decay (viscous, velocity squared, 
and so forth); that is, no assumption is made as to the shape of the envelope. 
This effect can be seen by considering a hypothetical case in which an arbi- 
trary velocity time history is available. Application of equation (l) yields 

l/2 u2        \ 
^      2 mVW,l " umax,2J 

6=2E = - 7T [2) 

m/
umax,l + %ax,2| 

where AE is the change in kinetic energy between successive peaks and E 
represents the average of peak energy levels of the system, m is the mass of 
the system, and umax is the maximum velocity. Equation (2) reduces to 

/umax, 1 

£E = 2 
Umax>2    I (3) 

2E   \ "max.l v - + 1 
\%ax,2 

x. T  ^Wx, 1 
This relationship is the first term in the series expansion of log *— 

"max, 2 

AE 
which is by definition the log decrement. The error in assuming that 5 = -^ 

is that involved in dropping the higher ordered terms of the series which are 
usually very small. The second point to be noted is the additive nature of the 
various sources of damping. For example, if the energy loss is attributed to 
the combination of internal dissipation, joint losses, and external losses, 
then the decrement can be written as 

AE      AE.   +AE-+AEe 

2E 2E 

where AEi represents the internal losses; AEj, the joint losses; and AEe, 

the external losses. Thus, if the losses attributed to one or more sources 
are known, these losses can be subtracted from the total measured decrement to 
yield a value for the remaining energy dissipation. 

For the configurations under study, the total decrement was measured 
throughout a wide range of variables. The decrement was written as 

AE-v- + AEa , . 
8 =—£- £ (5) 

2E 



where AEX is the total of all the extraneous damping of the beam system such 
as the internal hysteresis of the beam, dissipation at the beam support inter- 
face, and so forth. The value of AEX was accurately determined prior to 
testing a particular configuration by tuning the beam alone to the desired fre- 
quency and measuring the decrement.  The additional damping measured for the 
assembled system was isolated and attributed to the air resistance of the 
models and can be written as 

^Üä (6) 
2E 

Once the air damping of the models was isolated, examination of the effects 
of each of the variables (pressure or density, amplitude, frequency, area, and 
shape) on the decrement or more specifically the energy loss per cycle AE 
remained. In this case the loss per cycle is equal to the work done by the 
dissipative force or 

AE = J |xdy| (7) 

If, for example, the forces are viscous or directly proportional but opposed to 
velocity as discussed in reference 8, the energy loss would be 

AE = / |X dy | = / |cy dy| (8) 

where c may be a function of the density, area, and so forth, but independent 
of velocity y. Since the motion of the models is essentially harmonic, the 
velocity is assumed to be 

y = yQü3 cos cot (9) 

for the case of low damping.  Hence 

r>2jt/cu 

= /     cyQ cD
2cos2ü)t dt (10) AE 

'o 

which when integrated gives 

ro 

The corresponding total energy or E is simply 

1.22 

AE = cy.2cüjt (11) 

E = | my0 o> (12) 

8 



and hence 

S = — (13) 

where m is the oscillatory mass, and a)    is the circular frequency. Thus in 
the viscous case the decrement is independent of amplitude but is a function of 
frequency. 

If the damping is proportional to the velocity squared, a similar calcu- 
lation in which 

AE = by dy v    33 2jt/< <x> 

0 
COS'Oüt dt (IM 

will yield a decrement 

*    8 ty0 s=3 — (15) 

which is a linear function of displacement and independent of frequency for a 
particular system. 

When the data were analyzed and presented, the effects of pressure and 
amplitude were isolated to determine, for a particular system, whether the 
damping was viscous, velocity squared, or of some intermediate form. The data 
were then presented in forms suggested by either equation (13) or (15) to 
determine the relationships between pressure, area, shape, frequency, and 
damping. 

In the case of the sphere or cylinder, equations are available for com- 
parison of the experimental results with theory. The problem of a sphere per- 
forming pendulum oscillations of small amplitude in an incompressible infinite 
mass of viscous fluid has been treated by Lamb and Stokes, references 3 and h, 
respectively. The derivation of the resultant force acting on the spherical 
surface yields a force component which is linearly proportional to and in oppo- 
sition to the velocity as follows: 

X = 3rtpa^cD 
ßa  ß2a2J 

u (16) 

where 

P 

a 

damping force 

fluid density 

radius of sphere 

circular frequency of oscillations 



1/2 
ß = (CD/2V) ' 

V       kinematic viscosity 

u       velocity 

Using 

& = 

where 

c       damping coefficient 

m       oscillatory mass 

Hence the logarithmic decrement is 

jtc _ it /X\ 

vw ~ DXo\n/ 

3rt2pa5/— + 

8 = £—LAi (17) 
m 

The viscous damping force on a cylinder with a high length-radius ratio 
vibrating rectilinearly normal to its length at small amplitudes has been cal- 
culated by Stokes.  (See ref. k.)    The damping force is given as 

X . »^JL + -igju (18) 

where a and I    are the radius and length of the cylinder, respectively, and 
the other symbols are as previously defined. 

Again setting 

5  = 2£ =  *-(*) 
um      IOD\U/ 

yields 

= r^fafjL +     IV (19) 
m      lßa      ß2a2j 

PRESENTATION AND DISCUSSION OF RESULTS 

The primary objective of the test program was the isolation and examina- 
tion of the effect of density on the air damping of the two- and three- 
dimensional shapes. This objective was accomplished by examining the 

10 



difference in magnitude of the total 
system damping and the beam damping 
measured over a wide range of pres- 
sures. At each pressure level, the 
damping was measured for several 
amplitudes of vibration so the 
effect of amplitude could also be 
isolated and studied. By comparing 
the data from each of the systems, 
the effects of frequency, shape, and 
area become evident. The relation- 
ships established by these data were 
compared with the measured damping 
of panels of much larger area to 
examine the validity of extrapola- 
tion. The data which follow exem- 
plify these points. 

Tip deflection, in. 

.0015 

Figure 3.- Variation of beam damping with 
pressure, f = 3-8 cps. 

Beam Damping 

The damping associated with the fundamental mode of oscillation of the 
cantilever beam, tuned to 3.8 cycles per second, is presented in figure 3. 
These data served as a tare for obtaining the air damping of the low-frequency 
assemblies and similar results for the beam tuned to 21.2 cycles per second were 
used in the high-frequency cases. The damping factors, in terms of the loga- 
rithmic decrement 6, are shown as a function of the pressure for several dif- 
ferent tip amplitudes (note suppressed zero). In this case, as well as those 
to follow, the data points represent an average of five or more measured values. 
The total damping associated with the beam exhibits a near-linear dependency on 
pressure in the range between atmospheric pressure and 100 torr. Below 100 torr 
the damping factors deviate from this linear pressure relationship and approach 
values at k  X 10-2 torr which are most probably due to the internal hysteresis 
and joint friction. Wo attempt was made to isolate these particular effects 
as the results served only as a tare. At all pressures the magnitude of the 
damping is proportional to the tip 
amplitude.  The curve as presented       .010 
was rerun periodically and was 
found to be highly repeatable. 008 

Total Damping of Beam-Model System 

A typical sample of the data, 
as recorded, is shown in figure k 
to illustrate the relative magni- 
tudes of the beam and total 
damping. The total damping 
recorded for the 30-square-inch 
rectangle mounted on the tip of 
the low-frequency beam is pre- 
sented as a function of pressure 

Figure k.-  Variation of total damping with 
pressure, f = 3-8 cps. 
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and amplitude. The amplitudes refer to the average deflection of the center of 
the plate during the damping measurement and correspond to the beam tip deflec- 
tions shown in the previous figure. It is interesting to note the significant 
increase in the system damping with the addition of the plate. For example, an 
increase in damping by a factor of approximately five is noted in the high- 
pressure region. As the pressure is decreased, the values of damping converge 
to the values measured for the beam alone in the low-pressure region. This 
condition indicates that no extraneous damping is introduced into the system 
with the addition of the plate and thus the additional damping may be attrib- 
uted to the air resistance. 

.012 

.010 

(30 in* j 

Amplitude, in. 

.51 y° 

.008 w 

«>   .006 /                              32^°'' 
^^a 

o 
a 

S  .004 
E 
D J3--<r~ 

.002 

*a£z-——   ~                ,                 , 

~&~^             ^^_jfi_A- 

i 

400 600 

Pressure,  torr 

(a) 30-square-inch disk. 

■t      .004 
E 

400 

Pressure,   torr 

(b)    30-square-inch rectangle. 

Figure 5.- Variation of air damping with 
pressure,  f = 3.8 cps. 

A separate test was con- 
ducted to determine the effect, 
if any, of the bell jar on the 
damping. A ^5-square-inch plate 
was attached to the beam (3»8 cps) 
and the damping recorded of sev- 
eral amplitudes at atmospheric 
pressure. The bell jar was then 
removed and the test rerun. 
Since the data obtained with and 
without the bell jar were essen- 
tially identical, it was con- 
cluded that the presence of the 
bell jar per se had no signifi- 
cant effect on the damping of the 
models. 

Damping of Two-Dimensional Models 

Effect of pressure.- The 
dependency of the air damping on 
the pressure, and hence on the 
density of the test medium, is 
presented in figure 5. The air 
damping, obtained by subtracting 
the beam damping from the total 
damping at corresponding pres- 
sures and amplitudes, is shown 
for the 3O-square-inch plates at 
3.8 cps. The damping factor 
exhibits a linear dependency on 
the pressure throughout the range 
examined. A strong dependency of 
the damping on the amplitude of 
deflection is also noted and 
indicates the presence of a non- 
linear damping phenomena. Iden- 
tical trends were noted in the 
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.012 

.010 

.008 

.004 

Pressure, torr 

760 . 

Amplitude, in. 

(a) 50-square-inch disk. 

Figure 6.- Variation of air damping with amplitude, 
f = 3.8 cps. 

case of the 15- and 
lj-5-square-inch plates and 
these results are pre- 
sented in a subsequent 
section on shape in which 
all the data are compared. 

Effect of amplitude.- 
The variation of damping 
with amplitude for the two 
30-square-inch configura- 
tions is presented in fig- 
ure 6. The trends existing 
in these cases are again 
representative of the 
results obtained for the 
other plates studied at 
3.8 cps. For the range of 
amplitude examined, the 
damping is a near-linear 
function of plate deflec- 
tion. Because of this linear dependency, the damping is apparently of the 
velocity squared type as previously discussed. Thus, the resistance force is 

proportional to the dynamic pressure -pu2 as would be found in the case of a 

panel immersed in a steady stream of incompressible fluid. It should be noted 
that an extension of the faired lines will not intersect the origin. It is 
possible that in the low-amplitude range, the forces become viscous in nature 
and therefore the amplitude dependency or slope of the curve is reduced. 

Effect of frequency.- The 
effects of frequency on the 
damping-pressure-amplitude rela- 
tionship observed in the previous 
cases were examined by employing 
the beam having a tuned frequency 
of 21.2 cps. The decrements are 
presented in figure 7 as a func- 
tion of pressure and amplitude for 
the 30-square-inch disk. Except 
in the very low pressure region, 
the damping is again a linear 
function of pressure as shown in 
figure 7(a). Because of the beam 
stiffness, amplitudes comparable 
to those of the low-frequency case 
could not be obtained with the 
solenoid. Consequently, the effect 
of amplitude on the air damping was 
examined by removing the bell jar 
and displacing the beam manually. 

.010 

.008 
Pressure, torr 

760 // 
P    30    in2 

0 

5 .006 

ßr                   572^-' 
s^O 

C 
Q 
E .004 o/ 

< 
.002 

o^^^ 
■X*                     381 —- 

189____ 

i             i             i 

.2 .3 

Amplitude, in. 

(h) 30-square-inch rectangle. 

Figure 6.- Concluded. 
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(a) Variation of air damping with pressure 
Amplitude O.kk  in. 

Amplitude, in. 

(b) Variation of air damping with 
amplitude. Pressure 760 torr. 

Figure 7.- Variation of air damping with 
pressure and amplitude,  f = 21.2 ops 

with that particular area. When the 
plates are compared the values of k 
are highly dependent upon the area. 

In the region of higher amplitudes, 
the damping is again directly pro- 
portional to displacement as shown 
in figure 7(b). As the amplitude 
is decreased, however, the damping 
becomes less dependent upon ampli- 
tude as was found in the low- 
frequency case. 

Effect of shape.- The effects 
of plate shape were examined by com- 
paring the damping factors asso- 
ciated with the circular and rec- 
tangular plates. The decrements, 
measured over a wide range of pres- 
sure and amplitude while attached 
to the beam of lower frequency, are 
summarized in figure 8.  The log 
decrement 5 is presented as a 
function of the parameter py/m 
where p is the density of the air 
within the chamber,  y is the 
amplitude of the center of the plate, 
and m is the effective mass of the 
system located at the center of the 
plate. The symbols indicate the 
pressure levels at which the meas- 
urements were taken. The decrement 
is a linear function of the param- 
eter py/m which is indicative of 
velocity squared damping.  For a 
given area,  6 = kpy/m where k is 
the slope of the curve associated 

results for the circular and rectangular 
are seen to be independent of shape but 

Effect of area.- A detailed examination of the nonlinear dependency of 
the air damping on plate area necessitated the use of the additional plates of 
surface areas between 12 and 59 square inches. The results of this examina- 
tion are shown in figure 9. The measured decrement is presented as a function 
of plate area for two particular amplitudes at each frequency.  The functional 

dependency was found to be 6 « A '5, the exponent k/3  being determined from 
the slopes of the four curves. It is interesting to note that the dependency 
on area is greater than that experienced by a similar plate in a steady flow 
field but less than the A2 relationship discussed in reference 6 for sound 
radiation damping. 

These results, obtained at atmospheric pressure, are compared with all 
the low-frequency data previously summarized. (See fig. 8.) As previously 
found, the decrement 6 is a linear function of py/m for a particular area 

Ik 



but the slope 5m/py did not 
vary directly with area. Thus 
for comparison purposes, all the 
low-frequency data are presented 
in figure 10 where the param- 
eter Sm/py is shown as a func- 
tion of area. The atmospheric 
data of figure 9 are represented 
by the circles and the data from 
figure 8 (slopes) are shown by 
the squares. The results indi- 
cate that the decrement 

pyAV3 

20xi<r5 

6 = 22 m for all the low- 
py 

(a) Disks. frequency data. In the case of 
the high-frequency data, the 
same relationship is adequate 
for predicting the damping for 
amplitudes greater than 
0.15 inch. Below 0.15 inch, the damping ceases to be a linear function of 
amplitude and therefore cannot be represented by the empirical relationship. 

Figure 8.- Variation of air damping with 
parameter py/m for plates. 

The application of the relationship developed in the previous section to 
plates of large area was examined. Plate areas of 71-3, 128, and 220 square 
inches (plate area minus area of beam overlay) were selected to provide an 
order-of-magnitude variation in size. The decrements measured at atmospheric 
pressure for three amplitudes are shown in figure 11 and are seen to be in 
excellent agreement with the empirical relationship. Thus it appears that the 
relationship can be applied directly to obtain the air damping of plates under 
conditions similar to those encountered in this investigation. In more general 
cases, it appears that damping measurements under atmospheric conditions can 
be extrapolated by using the functional relationship found to exist between the 
variables. 

20x10 

Apparent mass effects.- When 
the effects of pressure environ- 
ment on the vibratory response of 
a system are considered, fre- 
quency considerations are also of 
interest. The vibratory object 
experiences not only forces which 
oppose the velocity (damping 
forces) but also forces propor- 
tional to the acceleration which 
effectively alter the mass as 
discussed in reference 3. To 
examine the importance of this 
effect, frequencies were measured 
for the 30-square-inch circular 
plate, while it was attached to 
both the high- and low-frequency 

3.2x10"- 

(b) Kectangles. 

Figure 8.- Concluded. 
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a   .005 

Amplitude, 

(o)   f=3.8 cps 
L   I  

Slopes 4/3 

beams. The frequencies are shown in 
table II as a function of pressure and 
amplitude.  In the low-frequency case 
a very slight increase (less than 
0.3 percent) in frequency was noted as 
the pressure and hence apparent mass 
was decreased. No effect of pressure 
could be detected in the high-frequency 
case; thus, within the scope of this 
study apparent mass effects are con- 
sidered to be negligible. 

.001 

.   .0005 

Slopes 4/3 

(b)    f= 21.2 cps 

Area, sq ft 

Figure 9.- Variation of air damping 
with area. 

Damping of Three-Dimensional Models 

Sphere.- The air damping expe- 
rienced by the sphere with a projected 
surface area of 30 square inches is 
shown in figure 12.  The decrement, 
presented as a function of pressure 
and amplitude, is essentially propor- 
tional to the square root of the pres- 
sure or density and is virtually inde- 
pendent of the amplitude.  The 

 ,   independence of the air damping with 
5   amplitude is indicative of viscous 

damping forces as predicted by Lamb. 
(See ref. 3.) The magnitude of the 
theoretically predicted viscous force 
would yield the variation of damping 
with pressure shown by the dashed 

curve; these results are in very good agree- 
ment with the experimental data. The theo- 
retical decrement 

O     Data from fig. 9 

O     Data from fig. 8 

5   = 

3rt2pa3A   +     1    \ (17) 
Vßa      ß2a27 

m 

i  i i i i i    i i i i i 
.06 0.1 

Area, sq ft 

Figure 10.- Variation of 
parameter 8m/py with 
area. 

appears to be quite adequate for the predic- 
tion of the damping. 

Cylinder.- Similar results obtained for 
the cylinder are shown in figure 13 and are 
compared with the theory of Stokes for an 
infinite cylinder. Again, the decrement is 
proportional to the square root of the den- 
sity and is in excellent agreement with the 
theory in the case of low amplitude. At 
high amplitudes, however, a discrepancy of 
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the damping with amplitude is noted pos- 
sibly because of end effects or partial 
separation of the flow. However, the 
relationship 

5 = 

n2a,2pl(— + 
l^ßa ß2a2 
m (19) 

is probably adequate for predicting the 
damping in most engineering applications. 
It should be noted that in the cases of 
the sphere and cylinder, no variation of 
frequency with pressure was noted through- 
out the pressure range examined. 

—   Experimente] 
  —   Theoretical 

Amplitude, in. 

O    .51 
D    .32 
O   .18 
A    .10 

Figure 12.- Variation of air damping with 
pressure for the sphere,  f = 3-8 cps. 

Figure 11.- Variation of param- 
eter 6m/py for large areas. 

Figure 1J.- Variation of air damping 
with pressure for the cylinder, 
f = 3.8 cps. 
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CONCLUSIONS 

An investigation has been conducted to determine the air damping exhibited 
by rigid two- and three-dimensional shapes oscillating in a pressure environ- 
ment ranging from k  X 10~2 torr to 760 torr. Within the range of variables 
considered in this investigation, the following conclusions are noted: 

1. For systems having a relatively large ratio of area to mass, the magni- 
tude of the air damping may greatly exceed the damping attributed to all other 
sources. Values of air damping, an order of magnitude greater than the struc- 
tural damping, were observed in these tests. 

2. The damping factors associated with the two-dimensional plates exhibit 
a linear dependency on pressure and, except for relatively low amplitudes, a 
near-linear dependency on amplitude. Thus the damping forces are apparently 
proportional to the dynamic pressure. 

3. For the plates, the damping is independent of shape and varies with the 
4/3 power of the area. 

k.  The empirical relationship which best describes the dependency of the 
air damping of the plates on the variables, air density p,  amplitude y, 

PVAV3 
area A, and mass m, is 5 = K — , where K is equal to 22 in U.S. cus- ' ' m 
tomary units. 

5. The damping factors associated with the sphere are essentially propor- 
tional to the square root of the density, independent of the vibratory ampli- 
tude, and in good agreement with available theory based on viscous damping 
forces. 

6. At low amplitudes the cylinder exhibits damping factors in excellent 
agreement with those predicted by viscous theory. At higher amplitudes the 
damping exceeds theoretical predictions - possibly because of end effects or 
flow separation. 

7. The response frequency is virtually unaffected by changes in pressure 
and amplitude; therefore, apparent mass effects are considered to be negligible. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 9> 196"^ • 
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TABLE II.- EFFECT OF PRESSURE ON FREQUENCY 

Configuration Amplitude 
Frequencies for pressures of - 

76O torr 582 torr I89 torr 0.C4 torr 

^~^ O.5IÄ 5.767 5.767 3.770 5.771 

(  50 in.2 1 
.525 5.765 5.768 5.770 5.771 

V     J .181 5.765 5.768 5.770 5.772 

jo  of .105 5.76^ 3.768 5.771 5.772 

/—X 0.02^ 21.25 21.20 21.17 20.99 

1 50 in.2 ) 
.Ol^ 21.25 21.29 21.28 21.21 

V      J .010 21.29 21.22 21.26 21.15 

1°  °f .008 21.29 21.26 21.20 21.26 
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"The aeronautical and space activities of the United States shall he 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof." 

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND   SPACE  ADMINISTRATION 

Washington, D.C.    20546 


